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Abstract

We study the concentration dependence of the conformational and viscometric behaviour of short-chain polymer solutions in shear flow by

conducting a series of non-equilibrium molecular dynamics simulations, covering the entire concentration range. Our model explicitly

incorporates all of the important generic features of real polymer solutions—excluded volume, hydrodynamic interactions and finite chain

extensibility. Hydrodynamic interactions are included exactly by treating the solvent explicitly as an atomic fluid. The polymer molecules

studied consist of 20-site bead-rod model molecules, which correspond approximately to 12 Kuhn steps in the melt. For polyethylene, this

represents a molar mass of 1800 g mol21. In some respects, our results are consistent with experimental and theoretical results obtained for

long-chain polymer solutions. We calculate the Flory–Fox constant and find a value that agrees reasonably well with results for long chain

polymer solutions. Due to the short chain length of the molecules investigated, no semidilute region exists for these solutions. However, the

radius of gyration and viscosity still exhibit strong concentration dependence, which is well described by power series, rather than power law

expressions, in contrast to the behaviour usually observed in long-chain polymer solutions.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Our understanding of the static and dynamic properties

of polymer solutions is based on the successful theoretical

description provided by scaling and renormalization group

theories [1–3], the Rouse and Zimm models of polymer

dynamics, the concepts of static and hydrodynamic screen-

ing and the Doi–Edwards tube model for molecular motion

in the presence of entanglements [4]. During the past few

decades, these models have been subjected to intense

scrutiny using a wide variety of experimental and

computational techniques. As a result of these investi-

gations, we now have a rather complete picture of the types

of polymer fluids that are well-described by these theories.

Generally, the description applies best to very high

molecular weight polymers in athermal solvents either in

the limit of infinite dilution, or above the overlap

concentration. Less attention seems to have been given to

the transition from dilute to moderately concentrated

solutions or the transition from oligomeric to polymeric

solutions. When the standard description fails to describe

experimental data, discrepancies are often attributed to the

chains being too short, the solvent quality being too poor or

other complicating factors such as chain branching,

polydispersity or specific chemical interactions [5].

Computer simulation studies of polymer solutions make

it possible to eliminate some of these complicating factors.

The polydispersity and branching of model polymers

studied in computer simulations are exactly specified by

the model (and usually absent), and the solvent quality is

also easily modified, but other limitations are imposed by

currently available computational speed. In particular, the

chain lengths studied in computer simulations are generally

quite small, even when compared to the smallest values

commonly used in experimental studies, and the represen-

tation of the solvent is sometimes severely simplified in

order to achieve computational speed. Nevertheless, the

polymer solutions studied in molecular dynamics computer

simulations where both polymer and solvent are represented
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explicitly, are generally regarded as being relatively

realistic and there have been many cases in which theories

of polymer behaviour have been verified by molecular

dynamics simulations of short-chain polymer solutions.

For example, the dynamics of a dilute polymer solution

(actually a single chain in explicit solvent with periodic

boundary conditions) has been investigated, using molecu-

lar dynamics simulations, by Dunweg and Kremer [6] and

Pierleoni and Ryckaert [7], who found that the predictions

of the Zimm model were essentially confirmed for polymer

chains with maximum degree of polymerization N ¼ 60 and

N ¼ 30 in the respective studies. More recently, Ahlrichs,

Everaers and Dunweg [8] used molecular dynamics

simulations in combination with a coarse-grained lattice-

Boltzmann model of the solvent to investigate the dynamics

of semidilute polymer solutions ðN ¼ 1000Þ and found

evidence supporting the idea of hydrodynamic screening,

but only on length and time scales that are large enough for

topological constraints to become effective. This is

consistent with the picture introduced by de Gennes, now

generally agreed to be at least qualitatively correct in the

long chain limit.

However, many instances remain in which the properties

of polymer fluids are not adequately described by theory.

These instances are important, because by understanding

them better, we will be better able to model real polymer

solutions in which the molecular weight is regarded as too

small for the application of scaling and renormalization-

group theories and the tube model.

Two deficiencies stand out. First, it was remarked in

1975 by Daoud et al. [9] that the mechanism for the change

in the radius of gyration of a polymer molecule at

concentrations lower than the critical overlap concentration

is poorly understood. This remains true today, and it is

shown later that this mechanism is particularly important for

short-chain polymer solutions. Second, there is no adequate

theoretical prediction of the concentration dependence of

viscosity for short-chain polymer solutions. The low-

concentration limit is usually described in terms of the

Zimm model and the Huggins expansion, and the high

concentration limit is usually described using the modified

Rouse model, but there is apparently no single theory that

links these two limits [4]. This contrasts with the description

based on scaling, screening and reptation, which, at least

qualitatively describes the concentration dependence of the

viscosity for high molecular weight polymer solutions

above the overlap concentration. A complete theory of

polymer rheology should capture the transition from Zimm

and Huggins behaviour to either Rouse or reptation

dynamics as the concentration is increased. We hope that,

by investigating the transition from Huggins to Rouse

behaviour, we will obtain a clearer physical understanding

of the various mechanisms that collectively determine the

concentration dependence of the viscosity for real polymer

solutions.

In this article, we report the results of equilibrium and

non-equilibrium molecular dynamics simulations of short-

chain polymer solutions in a good solvent, covering the

entire concentration range. Conformational properties such

as the mean squared radius of gyration and mean squared

end-to-end distance, and viscometric properties such as the

viscosity and first and second normal stress coefficients, are

studied as a function of concentration. The concentration

dependence of these quantities is discussed in the context of

standard polymer solution theory. We compute the solution

viscosity as a function of concentration, and obtain the

intrinsic viscosity and Huggins coefficient for this model

polymer solution, which can be superficially compared with

experimental results. We also use the intrinsic viscosity to

calculate a value for the Flory–Fox parameter, F: This

parameter can be compared more reliably with the results of

experiment and theory because its asymptotic value is

independent of polymer molar mass.

2. Molecular model and simulation technique

2.1. Molecular model

The molecular dynamics approach treats all particles in

the system, including solvent molecules, explicitly. In the

work described here, the solvent molecules are modelled as

spherical Lennard–Jones particles, while the polymer

molecules are modelled as 20-site chains of similar spheres.

The polymer molecules are represented by a bead-rod model

with truncated and shifted Lennard–Jones (LJ) interactions

between all beads (‘sites’) except those which are bonded to

each other within a molecule.

The potential energy function describing all interactions

(polymer–polymer, polymer–solvent and solvent–solvent)

is given by

fðrijÞ ¼
4e

s

rij

 !12

2
s

rij

 !6" #
2 fc; rij # rc

0; rij . rc

8>><
>>: ð1Þ

where rij is the separation of two interaction sites, e is the

potential well depth and s is the value of rij at which the

unshifted potential is zero. The shift, fc; which is equal to

the value of the unshifted potential at the cutoff rij ¼ rc; is

introduced to eliminate the discontinuity in the potential

energy. At distances greater than the cutoff distance rc; the

potential is zero. For this set of simulations, we have taken

the cutoff point for the potential to be the position of the

minimum in the LJ potential, rc ¼ 21=6s: An LJ potential

with this truncation point is often known as the WCA

potential [10], and it results in purely repulsive interactions.

This potential is convenient for computational work because

it is short-ranged, and therefore computationally undemand-

ing, but still retains the essential physics, i.e. the repulsive

(excluded volume) interaction.

All interaction sites have equal mass mia ¼ m and the
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bonds between polymer interaction sites have length l ¼ s:

This bond length is chosen to be small enough to prevent

chain crossings.

In the remainder of this paper, we express all quantities

in terms of site reduced units for which the reduction

parameters are the site–site Lennard–Jones interaction

parameters e and s and the mass m of each site.

2.2. Equations of motion

Planar shear flow (PSF) in the x direction with velocity

gradient in the y direction can be described by the velocity

gradient tensor 7u; given by

7u ¼

0 0 0

_g 0 0

0 0 0

2
664

3
775 ð2Þ

where _g describes the rate of strain. For the low shear rates

used in this study, certain viscometric and conformational

parameters are expected to be linearly related to even

powers of the strain rate. Therefore, in this study, results are

illustrated relative to _g2; rather than simply _g:

We use the molecular version of the well-established

SLLOD equations of motion [11–15], which are given by

_ria ¼
pia

mia

þ ri·7u ð3Þ

_pia ¼ FLJ
ia þ FC

ia 2
mia

Mi

pi·7u 2 zM mia

Mi

pi ð4Þ

where ria and pia represent the position and thermal

momentum of site a of molecule i; ri represents the position

of the centre of mass of molecule i; mia is the mass of site ia

FLJ
ia represents the sum of all LJ type forces on site a of

molecule i and FC
ia represents the sum of all bond length

constraint forces on site a of molecule i: zM is the thermostat

multiplier, given by

zM ¼

XNm

i¼1

ðFi·pi 2 pi·7u·piÞ=Mi

XNm

i¼1

p2
i =Mi

ð5Þ

where pi ¼
P

pia represents the centre of mass momentum

of molecule i; Mi is the mass of molecule i; Fi is the total

force on molecule i; and Nm is the number of molecules in

the system. This expression for zM is derived from Gauss’

principle of least constraint, and acts to keep the molecular

centre of mass kinetic temperature TM constant, rather than

the atomic or site temperature. TM is defined by

TM ¼
1

kBf

XNm

i¼1

p2
i

Mi

ð6Þ

where f represents the number of translational centre of

mass degrees of freedom, which depends on the total

number of sites and the number of constraints (holonomic

and non-holonomic) on the system. The details of this

algorithm, including its statistical mechanical basis, the

constraint algorithm, and the thermostat, have been

discussed previously [11–15].

Note that in the equations of motion, the same strain rate

and thermostat terms are applied to all sites on a given

molecule. This means that they only affect the centre of

mass degrees of freedom and cannot interfere with

intramolecular (particularly the rotational) degrees of free-

dom. Alternative forms of the equations of motion and

thermostating terms can be applied, but they can result in a

non-zero antisymmetric stress and artificially enhanced

orientational ordering. These issues have also been

discussed in detail previously [16–19]. For our current

purposes, the molecular centre of mass thermostat will

suffice, since the reduced strain rates used are well below

_g ¼ 1:0; where all thermostats give identical results.

2.3. Viscometric functions

The pressure tensor was calculated using the molecular

expression

PV ¼
XNm

i¼1

pipi

Mi

2
1

2

XNm

i¼1

XN
a¼1

XNm

j–1

XN
b¼1

rijF
inter
iajb

* +
ð7Þ

where, as before, pi represents the total thermal momentum

of molecule i; rij is the separation of the centres of mass of

molecules i and j; and Finter
iajb represents the intermolecular

force on site ia due to site jb: For solvent molecules, the

number of sites per molecule is equal to one, and for pure

solvent, the molecular pressure tensor reduces to the usual

atomic expression.

In the presence of a non-equilibrium flow field, the non-

equilibrium component of the pressure tensor is given by

P ¼ P 2 p01 ð8Þ

where p0 is the equilibrium pressure, equal to one third of

the trace of the equilibrium pressure tensor ðð1=3ÞTrðP0ÞÞ: It

is also useful to define a total pressure p ¼ ð1=3ÞTrðPÞ so

that the change in the pressure with strain rate is given by

Dp ¼ p 2 p0: ð9Þ

It is now well established that both the pressure and the

internal energy are observed to vary strongly with strain rate

in NEMD simulations [11–14]. This occurs because the

strain rates that are easily studied by NEMD are of order 1 in

reduced units, which corresponds to approximately 1012 s21

for liquid Argon or 1011 s21 for CH4, in real units. In this

work, the strain rates used are unusually low for NEMD

simulations (being no greater than 0.0022 in reduced units)

and are comparable to the strain rates used in a recent direct

comparison between experiment and simulation [20]. At

these strain rates, we find that values of Dp are very small;

most are zero within errors.
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The viscometric functions of the system are defined by

components of the pressure tensor P. For our shear flow

geometry, defined by Eq. (2), the generalized non-New-

tonian shear viscosity of a fluid subject to PSF is defined as:

hs ¼ 2
Pxy þ Pyx

2 _g
: ð10Þ

The two normal stress differences are

N1 ¼ Pyy 2 Pxx ð11Þ

and

N2 ¼ Pzz 2 Pyy: ð12Þ

These result from restoring forces which act in opposition

to any flow-induced anisotropy in the fluid and can be used

to calculate the corresponding normal stress coefficients

C1 ¼
Pyy 2 Pxx

_g2
ð13Þ

and

C2 ¼
Pzz 2 Pyy

_g2
: ð14Þ

Experimentally, the first normal stress coefficient, C1; is

observed to approach a constant value as shear rate

approaches zero, while C2 has been found to be of the

order 2ð1=10ÞC1 [21]. For simple shear flow, hs;C1 and C2

are useful material functions for representing and relating

the three independent components of the stress tensor. They

are examined in detail in Section 3.2.

2.4. Simulation details

The equations of motion given above are solved at each

time-step by a five-value Gear predictor–corrector scheme

with a time-step of 0.004 reduced time units. Bulk

behaviour is simulated via periodic boundary conditions

(PBCs) and the minimum image convention, which

prescribes that the simulation box must be sufficiently

large and the range of the interaction sufficiently short that

each particle interacts only with the closest image of any

other particle.

Our algorithm for constant ðN;V ;TMÞ simulations of

solutions of Lennard–Jones chain molecules undergoing

shear flow is based on the Evans, Edberg and Morriss

algorithm [13–15], which we have substantially modified to

simulate planar elongational flow [22–25]. The current

study extends the work of Matin, Daivis and Todd who

simulated homogeneous shear and elongational flow in

chain molecular fluids with degree of polymerization N ¼

1; 2 and 4 [24] and later N ¼ 2; 4, 10, 20 and 50 [26,27].

However, in this article, we only report the results of planar

shear flow simulations.

The polymer site fraction, n1; is defined as the fraction of

sites in the system which belong to polymer molecules. This

quantity is used henceforward to describe the concentration

of the systems. Table 1 lists the values of n1 and the polymer

mass concentrations (mass of polymer per unit volume of

solution) in the solutions studied here, calculated from the

relation r1 ¼ n1r; where r is the overall mass density of the

solution which remains fixed at 0.84 in reduced units for all

of our simulations. This differs slightly from the usual

experimental situation, in which the pressure remains fixed

and small changes in volume due to mixing are possible. We

expect only minor differences between the results obtained

by varying the concentration at constant total density or

constant pressure. However, this is something that should be

investigated in future work.

The interaction between a given site and its own periodic

image is an unwanted and unphysical artefact of molecular

simulations that may occur due to the use of periodic

boundary conditions (PBCs). In the case of direct inter-

actions, this artefact is avoided by truncating the potential

and choosing the box size to be sufficiently large.

Hydrodynamic interactions, which are forces between

polymer segments propagated by flow of the suspension

medium, can have a sufficiently long range to seriously

affect simulations of dilute polymer solutions in periodic

boundary conditions [6]. We have determined that the

solutions used in this study are of sufficiently high

concentration that hydrodynamic interactions have substan-

tially decayed over the distance between periodic images.

We have used large systems, with a total number of sites

(solvent atoms plus polymer sites) of 10,000, to ensure that

our periodic box is large enough to allow the decay of long-

range hydrodynamic interactions, as well as to give suitably

accurate statistics. Through the simulation of a smaller

system with only 5120 sites, we were able to establish (as

reported in Section 3.2) that PBC-related artifacts had no

detectable effect on our results.

The various polymer and solvent systems used in these

simulations were generated from a single 20-site polymer

melt. Relevant proportions of the polymer chain molecules

in this system were broken into single-site molecules, by

simply changing the way they were defined in the program,

to produce the six different concentrations desired. Each of

the systems thus produced was then equilibrated for at least

Table 1

Simulation parameters: total number of sites ðNsÞ; number of polymer

molecules ðNmÞ; polymer site fraction ðn1Þ and reduced polymer mass

concentration ðr1Þ: Parameters in square brackets are used only in Section

3.2

Ns Nm n1 r1

10,000 0 0.0 0.000

10,000 100 0.2 0.168

[5120] [51] [0.2] [0.167]

10,000 200 0.4 0.336

10,000 300 0.6 0.504

10,000 400 0.8 0.672

10,000 500 1.0 0.840
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4,000,000 time-steps, at each of the six required shear rates

( _g ¼ 0:0000; 0.0005, 0.00071, 0.0010, 0.0016 and 0.0022)

to ensure that a steady state had been reached. Thereafter, a

production run of 4,000,000 time-steps was completed for

each of the 36 systems.

During each of these production runs, properties of the

system were calculated every 0.1 reduced time units, with

these being averaged into 10 or 20 blocks for the production

runs, enabling the calculation of standard errors in the

means of all measured properties [24]. Conformational data

quoted in Section 3.1 were averaged over every polymer

molecule in the simulation box for five instantaneous states

at each concentration.

3. Results and discussion

3.1. Polymer conformation

Polymer molecules in dilute solutions are typically

separated from one another and coiled up to occupy an

elliptical region with a continually varying shape and

orientation [28], so that the time-averaged polymer

conformation in the laboratory coordinate system forms a

sphere with a size defined by the radius of gyration, Rg

R2
g ¼

1

2N2

X
i

X
j

kr2
ijl ð15Þ

where N is the number of sites in the chain and rij is the

distance between sites i and j on the molecule. The

magnitude of Rg depends on the quality of the solvent in

which the polymer is suspended. The relationship between

the spatial distance between two sites and the number of

bonds between the two sites is given by kr2
ijl/ lj 2 il2n

where n; the Flory exponent, depends on solvent quality. For

poor solvents, where the chains behave ideally and can be

described by Gaussian random walk statistics, n is equal to

0.5 (so that kr2
ijl/ lj 2 il). In good solvents, however,

polymer chains exhibit excluded volume effects and swell

so that the molecule executes a self-avoiding walk and n is

greater than 0.5. Flory’s mean field theory predicts that n in

a good solvent should be 0.6 [29] whereas more precise

renormalization group theory and numerical computation

gives a value of 0.588 [1,2].

Experimental studies have shown that properties such as

the radius of gyration and osmotic pressure undergo a

marked change in behavior as the concentration increases

and the domains occupied by different molecules begin to

overlap, but this change occurs gradually—not at a precise

value of concentration. For sufficiently high molecular

weight molecules, there exists a semi-dilute concentration

regime where the polymer chains overlap, but their overall

volume fraction remains low. The existence of a semi-dilute

regime requires the existence of a length scale j such that

bK p jp R; where bK is the Kuhn length and R is the

equilibrium root mean square end-to-end distance. In this

regime, the average concentration of the solution is

comparable to the local concentration within the domain

of each molecule. Theoretical predictions of the concen-

tration dependence of the solution properties in the

semidilute regime are available [1,2,4]. These properties

are also expected to depend upon the strain rate in a shearing

system.

The following results are presented as an exploration of

these theoretical issues. Here, we examine the concentration

and shear rate dependence of the polymer size in terms of

the mean squared radius of gyration and the mean squared

end-to-end distance. Fig. 1 shows the behaviour of R2
g;s; the

shear rate dependent mean squared radius of gyration of

the polymer molecules, with respect to _g2 for each of the

different concentrations simulated (excluding n1 ¼ 0:0).

The linear behaviour of the data in this figure allows us to

define the zero-shear rate mean squared radius of gyration,

R2
g; of the polymers in each solution using the relationship

R2
g;s ¼ a _g2 þ R2

g ð16Þ

where a; calculated as the gradient of R2
g;s versus _g2;

obviously varies with polymer concentration. Values of a

and R2
g for our systems are listed in Table 2. Clearly,

polymer size increases with increasing shear rate at all

concentrations, though this phenomenon becomes less

pronounced as polymer concentration is decreased (as

shown by the drop in a with decreasing n1 in Table 2).

Evidently, the polymer molecules in the more dilute

solutions are in a swollen state at equilibrium, so the shear

flow can have little effect on their size. Conversely, those

polymer molecules which are unperturbed at zero shear rate

are liable to be stretched more by the effect of shear.

Overall, polymer size decreases with increasing concen-

tration for all of the shear rates used here, so that polymers

in concentrated solutions never find themselves as expanded

as their dilute solution counterparts.

Fig. 1. Shear-dependent mean squared radius of gyration, R2
g;s versus

squared strain rate _g2, for polymer concentrations n1 ¼ 0:2 (circles), n1 ¼

0:4 (squares), n1 ¼ 0:6 (diamonds), n1 ¼ 0:8 (up triangles), and n1 ¼ 1:0

(down triangles). Error bars are approximately the same size as the plot

symbols.
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The zero-shear-rate values of R2
g are plotted against

concentration, n1; in Fig. 2. The curve shown is a cubic

polynomial fit. Extrapolating this fit back to n1 ¼ 0:0 gives a

value for R2
g at zero shear rate and infinite dilution of R2

g;0 ¼

5:83ð2Þ: A similar analysis of the zero-shear values of R2;

the mean squared end-to-end distance of the polymer

molecules (also shown in Table 2) produces the infinite

dilution value R2
0 ¼ 38ð1Þ: The resulting values of Rg;0 ¼

2:415ð2Þ and R0 ¼ 6:16ð1Þ are similar to the values

identified by Pierleoni and Ryckaert [30] for a 20-site

bead-stiff-spring chain, simulated with Brownian

Dynamics. They found that Rg;0 ¼ 2:340ð2Þ and R0 ¼

5:83ð1Þ: More obviously comparable results can be found

in an earlier study by Pierleoni and Ryckaert [7] where

molecular dynamics was used to simulate a single bead-rod

model polymer, very similar (but not identical) to ours,

which was subject to a WCA potential in an explicit

Lennard–Jones solvent. While they reported Rg;0 and R0

results for chain lengths of N ¼ 6; 9, 30 only, the scaling of

these values can be used to interpolate values of Rg;0 ¼ 2:47

and R0 ¼ 6:06 for an N ¼ 20 chain, which are very close to

our results.

The concentration dependence of the radius of gyration

of long-chain polymers is often assumed to be negligible

below the overlap concentration np
1 and to vary due to the

screening of excluded volume interactions in the semidilute

concentration region. Our value of R2
g;0 ¼ 5:83ð2Þ can be

used to calculate a value for np
1 from

np
1 ¼

N
4
3
pR3

gr
; ð17Þ

which represents one of a number of plausible methods for

evaluating np
1: (Note that the factor of r arises from our use

of site fraction rather than mass concentration as our

concentration unit.) This method assumes that crossover

occurs when the average concentration of the solution is

equal to the concentration within the domain (assumed to be

spherical) of the polymer molecule using the radius of

gyration at infinite dilution. Using this formulation, a value

for np
1 of 0.40(2) is obtained. An alternative that takes the

change in the radius of gyration with concentration into

account, is to perform the calculation using the radius of

gyration in the melt. This gives an upper limit for np
1 of 0.52.

For comparison, an example of an alternative method for

evaluating np
1; suggested by the experimental work of

Nystrom and Roots [5], is to calculate it as the inverse of the

intrinsic viscosity of the polymer ðnp
1 ¼ ½h�21Þ: Using the

value ½h� ¼ 4:0ð4Þ (calculated below, in Section 3.2) we

obtain the result np
1 ¼ 0:25ð3Þ: These values for np

1 differ

considerably, but it should be understood that the onset of

polymer overlap does not necessarily result in a sudden or

obvious change in solution properties. Rather it can be

regarded as a gradual change that occurs over a range of

concentrations. We will take 0.40(2) as a reasonable

estimate of the value of np
1; for this system.

Daoud et al. [9] used scaling arguments to predict a

relationship between macromolecular size and solution

concentration in the semidilute regime given by

R2
g / n

2n21
3n21
1 ; ð18Þ

where the excluded volume exponent, n; is predicted by

mean field theory to be equal to 0.6, and by renormalization

group theory to be 0.588. Both of these values produce a

value for the exponent of n1 in Eq. (18) which is

approximately 21/4. Experimental results for long chain

polymer solutions are unable to distingush between the two

theoretical values for the exponent of n1 [31], but they do

show that the slope of logðR2
gÞ versus the log of

concentration increases in magnitude with polymer con-

centration, exceeding 21/4 when the solution becomes

concentrated [32]. The data shown in Fig. 3 demonstrate

that the magnitude of the slope of logðR2
gÞ versus logðn1Þ

increases with concentration for our system. However,

while the general shape of this curve is similar to

experimental results, the gradients of the data range from

approximately 21/20 to 21/10. This difference reflects the

differing conformational behaviour of the very short

polymer chains used in this study and the long molecules

used in experiments. Almost all of the solutions simulated in

Table 2

Polymer molecule size and distortion: the mean squared radius of gyration,

R2
g, mean squared end-to-end distance R2 and their ratio, and values of the

gradient, a of R2
g;s versus _g2 shown in Fig. 1

n1 a £ 1024 _g ¼ 0:0 _g ¼ 0:0022

R2
g R2 R2=R2

g R2
g R2 R2=R2

g

0.2 1.2(4) 5.54(1) 36.4(2) 6.57(5) 5.59(1) 34.8(1) 6.22(3)

0.4 2.2(4) 5.33(1) 33(2) 6.2(4) 5.3(1) 33(1) 6.2(3)

0.6 3.0(4) 5.170(9) 33(1) 6.4(2) 5.26(1) 33(1) 6.3(2)

0.8 4.8(4) 5.051(8) 30(1) 5.9(2) 5.152(7) 31(1) 6.0(2)

1.0 6.6(4) 4.925(9) 29.5(9) 6.0(2) 5.09(1) 30.81(8) 6.05(3)

Numbers in brackets represent uncertainties.

Fig. 2. Mean squared radius of gyration at equilibrium, R2
g, versus polymer

concentration, n1: The solid line is a cubic polynomial fit to the data

extrapolated to n1 ¼ 0 (infinite dilution). Error bars are smaller than plot

symbols.
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this work have concentrations greater than the overlap

concentration calculated above. The fact that we do not

observe the predicted exponent for the change in polymer

size with increasing concentration confirms that a semi-

dilute region does not exist for our solutions of very short

chain polymers. Considering that a semidilute region does

not exist, we might expect the solution behaviour to cross

over directly from the dilute to concentrated solution

behaviour. In concentrated solutions, mean-field type

behaviour might be expected. Mean field theory [4] predicts

power-law behaviour for R2
g with an exponent of 21/2,

which is still far from the values that we observe here.

Therefore, neither the mean-field nor scaling theories

predict the exponents that we observe.

We now examine the ratio of mean squared end-to-end

distance R2 to mean squared radius of gyration R2
g for the

polymer molecules in each solution. Table 2 shows values

of this ratio for solutions with and without shear. According

to theory, the ratio R2=R2
g is equal to 6, for sufficiently long,

linear Gaussian chains and it increases to 6.302 for a long

polymer in a good solvent [33]. The results in Table 2 show

that the ratio is within uncertainties of the expected value of

6 for the melt ðn1 ¼ 1:0Þ; and that its value increases, as

expected, as the concentration decreases. The value of the

ratio in the limit of zero concentration obtained from a linear

fit to the data is 6.6, which is considerably larger than the

limiting value expected for long molecules, 6.302 [33]. This

is consistent with the observation that the chain expansion is

more pronounced near the centre of the molecule. For short

polymers, this effect will be dominant, and a calculation that

does not take into account the weakening of chain swelling

for longer molecules gives a value of R2=R2
g closer to 6.9

[34], indicating that a higher value than 6.302 might be

expected for short chains.

The distortion of the polymer molecules under shear is

demonstrated by the _g ¼ 0:0022 results in Table 2. Here, all

values of R2=R2
g are less than their corresponding equili-

brium values.

These variations are exhibited in more detail in the site

statistics plots (Figs. 4–7) where the logarithm of the

ensemble averaged rms distance between polymer sites i

and j; given by logkR2
ijl

1=2; is plotted against the logarithm of

the number of bonds between the two sites, loglj 2 il: A

solid line of gradient 0.6 is also included to illustrate the

degree to which each system adheres to the prediction that

kR2
ijl

1=2 / lj 2 iln with n ¼ 0:6 for a polymer in a good

solvent, and thus demonstrate when excluded volume

effects are dominant.

Figs. 4 and 5 show the site statistics at equilibrium for

polymer concentrations of n1 ¼ 0:4 and 0.8, respectively.

Clearly, the results for n1 ¼ 0:4 conform closely to the n ¼

0:6 gradient, strongly exhibiting an excluded volume effect,

while the site statistics for n1 ¼ 0:8 deviate significantly

from this behaviour. This is further elucidated in Table 3.

For comparison, plots of these results for the maximum

shear rate, _g ¼ 0:0022; are shown in Figs. 6 and 7. There is

minimal difference in site statistics between Figs. 4 and 6

where n1 ¼ 0:4 (just above np
1) and the molecules are

already swollen before shear is applied. Under shear, the

lower concentration solutions are only slightly affected,

with the greater flexibility of the chain ends leading to some

increased deformation at the high lj 2 il-values. By

contrast, the obvious difference between Figs. 5 and 7,

where the solution has a concentration n1 ¼ 0:8, indicates

that the polymer molecules are randomly coiled at

equilibrium, and that even relatively weak shear flow can

deform them. The conformity of the Fig. 7 data with the line

of gradient 0.6 is probably coincidental. The kR2
ijl

1=2

distances are spherically averaged, so the increase in their

magnitudes with the application of shear reflects a stretching

of the molecules in one direction, rather than enhancement

of the excluded volume effect. These results confirm the

conclusions drawn earlier from Fig. 1, where it was

observed that polymer molecules in concentrated solutions

are unperturbed at equilibrium and undergo more expansion

under shear than do identical molecules in more dilute

systems. Table 3 provides a quantitative measure of these

observations by listing the gradients of linear fits to the

Fig. 3. Log of the mean square radius of gyration at equilibrium, logðR2
gÞ;

versus log of polymer concentration, logðn1Þ:

Fig. 4. Site statistics for n1 ¼ 0:4 at equilibrium. The solid line indicates a

gradient of 0.6.
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logkR2
ijl

1=2 versus loglj 2 il data. This table lists the gradients

of logkR2
ijl

1=2 versus loglj 2 il data calculated for the whole

length of the 20-site chains ðlj 2 ilmax ¼ 19Þ; and for all

polymer sites except for one ðlj 2 ilmax ¼ 17Þ and two ðlj 2
ilmax ¼ 15Þ at either end of the chains. Included in this table,

but not illustrated graphically, are the data for n1 ¼ 0:6

which fall, as one would expect, between the values for

n1 ¼ 0:4 and 0.8. Also included but not illustrated is an

example of the gradient of logkR2
ijl

1=2 versus loglj 2 il for

n1 ¼ 0:4 where only the sites in approximately the middle

third of the chains are included ðlj 2 ilmax ¼ 7Þ:

As implied by Fig. 4, the gradients of all n1 ¼ 0:4 results

are within errors of n ¼ 0:6; the expected value for a dilute

solution of a polymer in a good solvent. Interestingly, while

the results for n1 ¼ 0:6 and n1 ¼ 0:8 produce gradients

which exceed n ¼ 0:5; the gradient 0.5 forms a tangent to

the results when the first few lj 2 il values are ignored (as

indicated by dotted line in Fig. 5). This confirms that the

chain statistics for n1 ¼ 0:6; 0.8 and higher concentrations

tend towards random walk behaviour, like a dilute solution

of polymer in a theta solvent, as predicted by Flory.

The conformational data given above can be used to

calculate the Kuhn length, bK; the characteristic ratio, and

the number of bonds per Kuhn segment for our model

polymer. These quantities are defined for unperturbed

conditions. In our simulations, we do not have a theta

solvent, but unperturbed conditions are achieved in the melt.

At zero shear rate, we can use the rms end-to-end distance

and the contour length of our model polymer, L ¼ ðN 2 1Þl;

to obtain bK ¼ R2=L ¼ 1:55 and the number of Kuhn

segments per molecule, NK ¼ L=bK ¼ 12:2: This corre-

sponds to a characteristic ratio of C1 ¼ R2=l2ðN 2 1Þ ¼

1:55; indicating that this is a very flexible model chain. This

value can be compared with the value of 1.79 obtained for

the FENE chain model used by Kröger and Hess [37].

The value of NK that we have obtained also makes it

possible to estimate the molar mass of a polyethylene

molecule with an equivalent number of Kuhn steps to our

model polymer. Using a value of the characteristic ratio of

polyethylene in the melt at 440 K of C1 ¼ 7:2 [38] and the

contour length L ¼ lðN 2 1Þg where g is a geometrical

factor equal to 0.83 for polyethylene, we find that 12.2 Kuhn

segments corresponds to polyethylene of around 128

monomers, or a molar mass of 1800 g/mol.

With the value of the Kuhn length of 1.55 and the rms

end-to-end distance R ¼ 6:16 that we have obtained, we can

now establish that there can be no length scale j satisfying

the condition bK p jp R in our solutions. This makes it

clear that no semidilute region exists for the short polymer

chains studied here. Only two concentration regions, dilute

and concentrated, exist for these solutions.

Fig. 5. Site statistics for n1 ¼ 0:8 at equilibrium. The solid line indicates a

gradient of 0.6 and the dashed line indicates a gradient of 0.5.

Fig. 6. Site statistics for n1 ¼ 0:4 at _g ¼ 0:0022: The solid line indicates a

gradient of 0.6.

Fig. 7. Site statistics for n1 ¼ 0:8 at _g ¼ 0:0022: The solid line indicates a

gradient of 0.6.

Table 3

Gradients of linear fits to logkR2
ijl

1=2 versus loglj 2 il at equilibrium

n1 lj 2 ilmax ¼ 7 lj 2 ilmax ¼ 15 lj 2 ilmax ¼ 17 lj 2 ilmax ¼ 19

0.4 0.63(2) 0.608(4) 0.604(4) 0.601(4)

0.6 0.57(1) 0.56(2) 0.56(1)

0.8 0.54(1) 0.54(2) 0.53(2)

T. Kairn et al. / Polymer 45 (2004) 2453–24642460



3.2. Viscometric functions

The most significant results of this study come from the

analysis of the viscometric functions. We are unaware of

any other published results for the viscosity and first and

second normal stress coefficients, obtained from simulations

of polymer solutions, covering the entire polymer concen-

tration range.

Fig. 8 shows the relationship between shear viscosity, hs,

and _g2 for each of the six different polymer solution

concentrations simulated. At these very low strain rates, the

strain-rate dependence of the viscosity is very weak over the

entire concentration range, though it becomes marginally

stronger at high polymer concentrations. The monatomic

solvent is Newtonian at these strain rates. Matin, Daivis and

Todd [24] have found that for an atomic fluid identical to the

one simulated here, the power-law shear thinning regime

does not begin until _g2 ¼ 0:073: For all concentrations

studied here, the low strain rate _g2-dependence of hs is

linear. Consequently, the zero strain rate viscosity, h; can be

easily obtained from the intercept of a linear fit to the hs

versus _g2 data of the form

hsð _gÞ ¼ hþ b1 _g
2
: ð19Þ

The zero-shear rate viscosities and slopes are recorded in

Table 4.

The first and second normal stress differences, N1 and N2;

as defined in Section 2.3, result from forces opposing any

flow-induced anisotropy in the system. Results for these

values, plotted against _g2; for each of the different polymer

concentrations simulated, are shown in Figs. 9 and 10. The

data for N2 are noisy, close to zero and not indicative of any

clear trend. Such ambiguous results are common when

analyses of N2 are attempted, especially at low strain rates.

By comparison, trends in the N1 data are relatively clear.

The relationship between N1 and _g2 appears to be linear for

each of the different polymer concentrations, indicating that

the first normal stress coefficient is independent of shear rate

within the range investigated (Fig. 9).

It is evident from Table 4 and Fig. 8 that the zero shear

rate viscosity increases with increasing polymer concen-

tration. A combination of scaling theory with the reptation

model gives the simple prediction that the viscosity varies as

h/ N3n15=4
1 for very long molecules [4]. This is clearly not

applicable to the short molecules studied here, which are far

below the length required for the onset of entanglement

coupling. If we use the N dependence predicted by the

Rouse and Zimm models for unentangled polymers instead

of the repetition prediction, we obtain h/ Nn5=4
1 : This result

might be expected to hold for a semidilute solution of

molecules with molar masses below the value required for

the onset of entanglement coupling. Our data for logðhÞ

versus logðn1Þ are plotted in Fig. 12. Although a gradient of

5/4 is tangent to the results, there is no evidence for a power-

law region, and the data are better described by the simple

quadratic polynomial fit shown in Fig. 11.

The zero shear-rate viscosities are also useful in the

evaluation of ½h�; the intrinsic viscosity, which is a property

of a given polymer-solvent pair. The intrinsic viscosity is

defined by the zero-concentration limit of hsp=n1 where the

specific viscosity, hsp; is given by

hsp ¼
h2 h0

h0

; ð20Þ

h0 is the zero shear rate viscosity of the solvent and h is

the zero shear rate viscosity of each solution. Table 4 shows

Fig. 8. Shear viscosity hs versus squared strain rate ð _g2Þ, for polymer

concentrations n1 ¼ 0:0 (circles), n1 ¼ 0:2 (squares), n1 ¼ 0:4 (diamonds),

n1 ¼ 0:6 (up triangles), n1 ¼ 0:8 (down triangles), and n1 ¼ 1:0 (crosses).

Table 4

Viscometric properties. Results in square brackets are for a 5120-site

system, all others are for 10,000-site systems

n1 h b1 C1;0=102

0.0 1.8(1) 90(30) 20.3(8)

0.2 4.03(7) 21.3(2) £ 105 20.6(4)

[0.2] [3.4(3)]

0.4 5.60(9) 20.6(2) £ 105 5.5(9)

0.6 8.2(1) 20.8(3) £ 105 7.8(7)

0.8 11.32(1) 21.0(4) £ 105 15.0(8)

1.0 15.9(3) 21.7(8) £ 105 33(2)

Fig. 9. First normal stress differences N1 versus squared strain rate ð _g2Þ, for

polymer concentrations n1 ¼ 0:0 (circles), n1 ¼ 0:2 (squares), n1 ¼ 0:4

(diamonds), n1 ¼ 0:6 (up triangles), n1 ¼ 0:8 (down triangles), and n1 ¼

1:0 (crosses).
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the zero shear-rate viscosity and other results for an n1 ¼

0:2 solution of approximately half the volume of the other

systems simulated in this work. This result is included to

show the agreement between results for systems with very

different volumes, demonstrating the absence of artifacts

related to the use of periodic boundary conditions.

The equation for the second-order polynomial fit to the

data shown in Fig. 11, excluding the n1 ¼ 1:0 value, is given

by

h ¼ 1:9ð1Þ þ 7:7ð3Þn1 þ 4:9ð1Þn2
1: ð21Þ

The Huggins equation links concentration and intrinsic

viscosity, according to

h ¼ h0ð1 þ n1½h� þ kHn2
1½h�

2 þ · · ·Þ

¼ h0 þ h0½h�n1 þ h0kH½h�
2n2

1 þ · · · ð22Þ

Equating coefficients of Eqs. (21) and (22) allows us to

evaluate the intrinsic viscosity and Huggins constant, kH; for

this system. We obtain a value of ½h� ¼ 4:0ð4Þ for the

intrinsic viscosity and kH ¼ 0:16ð4Þ for the Huggins

constant where the concentration in expressed in terms of

site fraction. If the concentration is expressed in terms of

mass/volume, the value of the intrinsic viscosity becomes

½h� ¼ 4:8 and kH is unchanged.

To circumvent the difficulty of comparing our intrinsic

viscosity result with the results of experimental measure-

ments of long-chain systems, we calculate the dimension-

less quantity F; the Flory–Fox parameter, defined by

F ¼
NAUh=s

6
3
2

: ð23Þ

Here, NA is Avogadro’s number and Uh=s is defined in

reduced units by [3]

Uh=s ¼
M½h�

R3
g

: ð24Þ

F is a useful parameter for comparing experimental

results for different solutions. When this parameter is

evaluated using our calculated values for ½h� (after

conversion to mass/volume concentration units) and R2
g;0;

it produces the result F ¼ 2:79ð5Þ £ 1023: This falls below

the theoretical value, F ¼ 2:84 £ 1023; calculated using the

Zimm model by Osaki [34], and the earlier Pyun–Fixman

[35] value of F ¼ 2:68 £ 1023: A more recent theoretical

calculation by Oono [3] gives a value of 2.36 £ 1023. Our

result is also close to the range of experimental values for F

quoted by Krigbaum and Carpenter [36]. They summarise

results from experimental studies of solutions of poly-

styrene, polyisobutylene and polysilicons at various (high)

molecular weights, giving values of F which, when the

measured vaues are converted into compatible units, fall

between 2.5 £ 1023 and 2.8 £ 1023. Note that the theoretical

values that we compare with are calculated for theta

conditions. For a polymer in a good solvent, the value of F

is expected to decrease with increasing solvent quality and

molar mass [4].

The fact that our value of kH falls below 0.3 confirms that

the solvent we are simulating is very good. It is also

interesting to note that while the quadratic fit to the specific

viscosity data is expected to agree only in the dilute region,

Fig. 10. Second normal stress difference N2 versus squared strain rate ð _g2Þ,

for polymer concentrations n1 ¼ 0:0 (circles), n1 ¼ 0:2 (squares), n1 ¼ 0:4

(diamonds), n1 ¼ 0:6 (up triangles), n1 ¼ 0:8 (down triangles), and n1 ¼

1:0 (crosses).

Fig. 11. Zero-shear viscosity h versus polymer concentration n1: Linear plot

showing second-order polynomial fit to data.

Fig. 12. Log of zero shear viscosity logðhÞ versus log of polymer

concentration logðn1Þ:
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where the Huggins equation is known to apply, Fig. 11

shows that for this system, Huggins-like behaviour persists

over a much broader concentration range. This is consistent

with the concentration dependence of the radius of gyration,

which also displays relatively simple polynomial behaviour.

4. Conclusion

We have studied the concentration dependence of the

conformational and rheological properties of WCA-poten-

tial polymer chains with N ¼ 20; in an explicitly modelled

solvent, by non-equilibrium molecular dynamics. Although

polymer conformation and viscosity in an atomic solvent

have been studied before, the work reported here appears to

be unique among computer simulation studies in examining

the variation of these properties across the entire concen-

tration range.

The overlap concentration (expressed in terms of the

polymer site fraction) for this particular system is estimated

as falling within the range 0:40 # np
1 , 0:52: Solutions with

lower concentrations are shown to clearly experience a

strong excluded volume effect, with the end to end distance

between beads along the chain depending on the number of

intervening bonds with an exponent of n ¼ 0:6: As the

concentration is raised, Rg decreases, as expected. In the

melt, the chain statistics are well described by the random

walk model and the molecules can be regarded as

unperturbed. These features are typical of the behaviour of

a polymer in a good solvent. However, the concentration

dependence of the radius of gyration does not follow the

power laws predicted by scaling or mean-field theories, and

the usual explanation for the change in molecular size with

concentration in terms of screening of the excluded volume

interaction does not seem to apply, presumably because

these molecules are so short.

In the presence of a weak shear field, the molecules are

distorted, and Rg increases linearly with _g2; the rate of

increase becoming larger for the high concentration

systems. It is postulated that the shear field has a weaker

effect on the dilute solutions because the molecules are

already expanded in dilute solutions of polymers in a good

solvent.

By using very low values for _g we have been able to

observe a regime in which the more concentrated solutions

are slightly shear thinning, while the solvent is Newtonian.

The viscosity increases linearly with _g2 over the range of

shear rates investigated, allowing us to obtain precise values

of the zero shear rate viscosity for all concentrations. The

zero shear rate viscosity, h; increases with polymer

concentration, and is again well described by a polynomial,

rather than a power law dependence on concentration. The

value of the intrinsic viscosity of this polymer is found to be

½h� ¼ 4:0ð4Þ: This value is used with the radius of gyration

to calculate the Flory–Fox parameter for this system, giving

F ¼ 2:79ð5Þ £ 1023; which is close to the theoretically

calculated and experimentally measured values for much

longer chains than those studied here. The Huggins

coefficient is also obtained, giving the value kH ¼ 0:16ð4Þ:

We have also computed the value of the first normal

stress coefficient C1;0; as a function of concentration

(Fig. 13). We find that C1;0 increases strongly with

concentration, once again following a quadratic concen-

tration dependence over most of the concentration range.

Taken together, these results and our previous results for

the rheological properties of short chain polymer melts,

indicate that in dilute solutions and in the melt many

manifestations of typical polymer behaviour are observed

for the short chains studied here. The agreement between

our value of the Flory–Fox constant and theoretical values,

and the exponents found in the chain conformational data

for the dilute solutions imply that the usual description in

terms of the Zimm model and the self avoiding walk are

appropriate. The decrease in the radius of gyration, the

increase in the viscosity and the random walk behaviour in

the melt are also consistent with the typical polymer

behaviour. However, the concentration dependence of Rg

and hs is not quantitatively described by scaling or mean

field theory, both of which assume that screening is the main

mechanism governing the concentration dependence of

these quantities above the overlap concentration. The

overlap concentration is so high for these solutions that a

semidilute region does not exist. Instead, we observe a large

concentration regime in which ‘virial’ (polynomial) beha-

viour is observed. These observations indicate that a

mechanism other than screening is probably responsible

for the concentration dependence of Rg in very short chain

polymer solutions.
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